肌骨系统生物力学、软组织力学与步态分析、仿生假肢与外骨骼
[1]科技部重点研发计划,老年运动系统疾病生物力学智能矫治机制与关键技术研发,课题负责人,2018年-2022年
[2]上海市科委“科技创新行动计划” 生物医药科技支撑专项,步态中足底多维力检测解耦机理及关键技术研发,课题负责人,2020年-2022年
[3]上海航天控制技术研究所合作项目,康复外骨骼肌骨系统耦合动力学研究, 课题负责人,2020-06至2021-12
[4]上海市科委“科技创新行动计划”高新技术项目, 神经系统与运动系统病变的步态大数据及云平台关键技术研发, 课题负责人,2021-10-01至2023-09-30
[5]智能下肢假肢力(触)觉仿生系统研发, 复旦大学医工结合重点项目, 技术负责人,2023-01至2024-12
[6]国家军委科技委重点项目, 人体肌骨系统增强技术及系统研发, 课题负责人,2022-06至2025-12
[7]科技部国家重点研发计划主动健康和老龄化科技应对专项,老年人足部辅具关键技术研究及应用推广,课题参与人,2022-07 至 2025-06
[2] 2016年度,年度杰出评审员,Elsevier,Journal of Biomechanics期刊,排名1
[3] 2015年度, Yamaguchi 奖牌获得者, 亚太地区生物力学学会(Asia-Pacific Society of Biomechanics)和日本机械学会(Japanese Society of Mechanical Engineering),排名1
[4] 2011年度, “Martyn Shorten Innovation Award”-ISB创新学术奖, 国际生物力学学会(International Society of Biomechanics),排名1
[1]X Zhang, Z Teng, X Geng, X Ma, W-M Chen.(2023). A fluoroscopic imaging-guided computational analyses to inform internal tissue loads within fat pad of the diabetic foot during gait. Journal of Biomechanics, Volume 157: 111744. DOI: 10.1016/j.jbiomech.2023.111744
[2]Yinxiao Lu, Jun Zhu, Wenming Chen, Xin Ma.(2023). An IMU-Based Real-Time Gait Detection Method for Intelligent Control of Knee Assistive Devices. IEEE Transactions on Instrumentation and Measurement. Volume: 72: 2532309. DOI: 10.1109/TIM.2023.3329222
[3]B Hu, F Liu, K Cheng, W Chen. et al.(2023) Stiffness Optimal Modulation of a Variable Stiffness Energy Storage Hip Exoskeleton and Experiments on Its Assistance Effect. IEEE Transactions on Neural Systems and Rehabilitation Engineering, Volume 31: 1045-1055. DOI: 10.1109/TNSRE.2023.3236256
[4]L Qian, X Yang, X Ma, Y Yu, W-M Chen.(2022). Integration of reginal shear measurements at the foot-ground interface during routine balance assessment of the elderly population. Gait & Posture, Volume 96: 18-21. DOI: 10.1016/j.gaitpost.2022.05.008
[5]W Chen, Y Yu, X Geng, C Wang, L Chen, X Ma(2022). Modulation of internal tissue stresses of the knee via control of variable-stiffness properties in a 3D-printed footwear: A combined experimental and finite element analysis. Medical Engineering & Physics, Volume 104: 103800. DOI: 10.1016/j.medengphy.2022.103800
[6]Z Fan, X Hu, W Chen et al.(2022). A deep learning based 2-dimensional hip pressure signals analysis method for sitting posture recognition. Biomedical Signal Processing and Control. Volume 73:103432. DOI: 10.1016/j.bspc.2021.103432
[7] Wang D, Hu B, Chen WM et al.(2021). Design and Preliminary Validation of a Lightweight Powered Exoskeleton During Level Walking for Persons With Paraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 29: pp.2112-2123. DOI:10.1109/TNSRE.2021.3118725
[8] Chen WM, Li J.et al.(2020). The potential influence of stochastic resonance vibrations on neuromuscular strategies and center of pressure sway during single-leg stance. Clinical Biomechanics, 2020; Volume 77: pp.105069-74. DOI:doi.org/10.1016/j.clinbiomech.2020.105069
[9] Chen WM, Lee SJ.(2018).Strain behavior of malaligned cervical spine implanted with metal-on-polyethylene, metal-on-metal, and elastomeric artificial disc prostheses. Clinical Biomechanics. Volume 59, November 2018, Pages 19-26. DOI:10.1016/j.clinbiomech.2018.08.005
[10] Chen WM, Lee SJ, Lee PVS. (2017). Strategies towards rapid generation of forefoot model incorporating realistic geometry of metatarsals encapsulated into lumped soft tissues for personalized finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering. 20(13), pp 1421-1430. DOI:10.1080/10255842.2017.1370458
[11] Chen, WM., Xie, Y.M., Imbalzano, G.et al (2016). Lattice Ti structures with low rigidity but compatible mechanical strength: Design of implant materials for trabecular bone. International Journal of Precision Engineering and Manufacturing, 17, 793-799. DOI:10.1007/S12541-016-0097-6
[12] Chen WM, Lee SJ, Lee PVS. (2015). Plantar pressure relief under the metatarsal heads–Therapeutic insole design using three-dimensional finite element model of the foot. Journal of Biomechanics. 48 (4), pp 659–665. DOI:10.1016/j.jbiomech.2014.12.043
[13] Chen WM, Lee SJ, Lee PVS. (2014). The in-vivo plantar soft tissue mechanical property under the metatarsal head: Implications of tissues’ joint-Angle dependent response in foot finite element modeling. Journal of the mechanical behavior of biomedical materials. 40, 264–274. DOI:10.1016/j.jmbbm.2014.09.007
[14] Martig S, Chen WM, Lee PVS, Whitton R. (2014). Bone fatigue and its implications for injuries in racehorses. Equine veterinary journal. 46 (4), 408-415. DOI:10.1111/evj.12241
[15] Chen WM, Shim VPW, Park SB, Lee T. (2012), Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise – A 3D finite element analysis. Journal of Biomechanics, 45(10): 1783-1809. DOI:10.1016/j.jbiomech.2012.04.024
[16] Chen WM, Shim VPW, Lee T. (2011), An instrumented tissue tester for measuring soft tissue property under the metatarsal heads in relation to metatarsophalangeal joint angle. Journal of Biomechanics, 44(9): 1801-1804. DOI:10.1016/j.jbiomech.2011.03.031
[17] Chen WM, Lee SJ, Shim VPW, Lee T. (2010). A novel gait platform to measure isolated plantar metatarsal forces during walking. Journal of Biomechanics, 43(10): 2017–2021. DOI:10.1016/j.jbiomech.2010.03.036
[18] Chen WM, Lee T, Lee PVS, Lee JW, Lee SJ. (2010). Effects of internal stress concentrations in plantar soft-tissue—A preliminary three-dimensional finite element analysis. Medical Engineering & Physics, 32(4): 324–331. DOI:10.1016/j.medengphy.2010.01.001
[19] Ahn YH, Chen WM, Lee SJ. (2009). Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices. Biomedical Materials, 3:044101-6. DOI:10.1088/1748-6041/3/4/044101
[20]W-M Chen, C Park, K Lee, S Lee. (2009). In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement. Spine, 34(20):E716-23.DOI:10.1097/BRS.0b013e3181ae23d1